3.676 \(\int \frac{(d+e x)^{5/2}}{(f+g x) (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=188 \[ \frac{2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{5/2}}+\frac{2 g \sqrt{d+e x}}{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*g*Sqrt[d + e*x])/(
(c*d*f - a*e*g)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (2*g^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.269652, antiderivative size = 188, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {868, 874, 205} \[ \frac{2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{5/2}}+\frac{2 g \sqrt{d+e x}}{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*g*Sqrt[d + e*x])/(
(c*d*f - a*e*g)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (2*g^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(5/2)

Rule 868

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(c*e*f + c*d*g - b*e*g)), x]
 + Dist[(e^2*g*(m - n - 2))/((p + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{g \int \frac{(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{c d f-a e g}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 g \sqrt{d+e x}}{(c d f-a e g)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{g^2 \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{(c d f-a e g)^2}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 g \sqrt{d+e x}}{(c d f-a e g)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (2 e^2 g^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{(c d f-a e g)^2}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 g \sqrt{d+e x}}{(c d f-a e g)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{(c d f-a e g)^{5/2}}\\ \end{align*}

Mathematica [C]  time = 0.0396192, size = 73, normalized size = 0.39 \[ \frac{2 (d+e x)^{3/2} \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{3 ((d+e x) (a e+c d x))^{3/2} (a e g-c d f)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(2*(d + e*x)^(3/2)*Hypergeometric2F1[-3/2, 1, -1/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])/(3*(-(c*d*f) + a*e*
g)*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.419, size = 219, normalized size = 1.2 \begin{align*} -{\frac{2}{3\, \left ( cdx+ae \right ) ^{2} \left ( aeg-cdf \right ) ^{2}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 3\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) \sqrt{cdx+ae}xcd{g}^{2}+3\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) ae{g}^{2}\sqrt{cdx+ae}-3\,\sqrt{ \left ( aeg-cdf \right ) g}xcdg-4\,\sqrt{ \left ( aeg-cdf \right ) g}aeg+\sqrt{ \left ( aeg-cdf \right ) g}cdf \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-2/3*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*
e)^(1/2)*x*c*d*g^2+3*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*a*e*g^2*(c*d*x+a*e)^(1/2)-3*((a*e*g-
c*d*f)*g)^(1/2)*x*c*d*g-4*((a*e*g-c*d*f)*g)^(1/2)*a*e*g+((a*e*g-c*d*f)*g)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*
e)^2/(a*e*g-c*d*f)^2/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}{\left (g x + f\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*(g*x + f)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.80263, size = 2083, normalized size = 11.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[1/3*(3*(c^2*d^2*e*g*x^3 + a^2*d*e^2*g + (c^2*d^3 + 2*a*c*d*e^2)*g*x^2 + (2*a*c*d^2*e + a^2*e^3)*g*x)*sqrt(-g/
(c*d*f - a*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*
f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g)) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f +
 d*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*g*x - c*d*f + 4*a*e*g)*sqrt(e*x + d))/(a^2*c^
2*d^3*e^2*f^2 - 2*a^3*c*d^2*e^3*f*g + a^4*d*e^4*g^2 + (c^4*d^4*e*f^2 - 2*a*c^3*d^3*e^2*f*g + a^2*c^2*d^2*e^3*g
^2)*x^3 + ((c^4*d^5 + 2*a*c^3*d^3*e^2)*f^2 - 2*(a*c^3*d^4*e + 2*a^2*c^2*d^2*e^3)*f*g + (a^2*c^2*d^3*e^2 + 2*a^
3*c*d*e^4)*g^2)*x^2 + ((2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f^2 - 2*(2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*f*g + (2*a^
3*c*d^2*e^3 + a^4*e^5)*g^2)*x), 2/3*(3*(c^2*d^2*e*g*x^3 + a^2*d*e^2*g + (c^2*d^3 + 2*a*c*d*e^2)*g*x^2 + (2*a*c
*d^2*e + a^2*e^3)*g*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*
e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + sqrt(c*d*e*x^2 + a
*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*g*x - c*d*f + 4*a*e*g)*sqrt(e*x + d))/(a^2*c^2*d^3*e^2*f^2 - 2*a^3*c*d^2*e^3*
f*g + a^4*d*e^4*g^2 + (c^4*d^4*e*f^2 - 2*a*c^3*d^3*e^2*f*g + a^2*c^2*d^2*e^3*g^2)*x^3 + ((c^4*d^5 + 2*a*c^3*d^
3*e^2)*f^2 - 2*(a*c^3*d^4*e + 2*a^2*c^2*d^2*e^3)*f*g + (a^2*c^2*d^3*e^2 + 2*a^3*c*d*e^4)*g^2)*x^2 + ((2*a*c^3*
d^4*e + a^2*c^2*d^2*e^3)*f^2 - 2*(2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*f*g + (2*a^3*c*d^2*e^3 + a^4*e^5)*g^2)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x